翻訳と辞書 |
Spinor genus : ウィキペディア英語版 | Spinor genus In mathematics, the spinor genus is a classification of quadratic forms and lattices over the ring of integers, introduced by Martin Eichler. It refines the genus but may be coarser than proper equivalence ==Definitions== We define two Z-lattices ''L'' and ''M'' in a quadratic space ''V'' over Q to be spinor equivalent if there exists a transformation ''g'' in the proper orthogonal group ''O''+(''V'') and for every prime ''p'' there exists a local transformation ''f''''p'' of ''V''''p'' of spinor norm 1 such that ''M'' = ''g'' ''f''''p''''L''''p''. A ''spinor genus'' is an equivalence class for this equivalence relation. Properly equivalent lattices are in the same spinor genus, and lattices in the same spinor genus are in the same genus. The number of spinor genera in a genus is a power of two, and can be determined effectively.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Spinor genus」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|